题目内容
【题目】已知关于x的一元二次方程x2-2x+m=0,有两个不相等的实数根.
⑴求实数m的最大整数值;
⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.
【答案】⑴m的最大整数值为m=1
(2)x12+x22-x1x2= 5
【解析】试题分析:一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;
(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围.
试题解析:⑴由题意,得:△>0,即:>0 解得 m<2,∴m的最大整数值为m="1"
把m=1代入关于x的一元二次方程x2-2x+m=0得x2-2x+1=0,
根据根与系数的关系:x1+x2 =2, x1x2=1,
∴x12+x22-x1x2= (x1+x2)2-3x1x2=(2)2-3×1=5
练习册系列答案
相关题目
【题目】某日孙老师佩戴运动手环进行快走锻炼,两次锻炼后数据如下表.与第一次锻炼相比,孙老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.根据经验已知孙老师第二次锻炼时平均步长减少的百分率小于0.5.
项目 | 第一次锻炼 | 第二次锻炼 | ||
步数(步) | 10000 | ① | ||
平均步长(米/步) | 0.6 | ② | ||
距离(米) | 6000 | 7020 |
注:步数×平均步长=距离.
(1)求孙老师第二次锻炼时平均步长减少的百分率;
(2)孙老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求孙老师这500米的平均步长.