题目内容

【题目】如图,已知ABCADE都是等腰直角三角形,∠ACB=ADE=90°,点FBE的中点,连接CF,DF.

(1)如图1,当点DAB上,点EAC上时

①证明:BFC是等腰三角形;

②请判断线段CF,DF的关系?并说明理由;

(2)如图2,将图1中的ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.

【答案】(1)①证明见解析;②结论:CF=DFCFDF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.

【解析】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,ACB=90°,ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DFG使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,BCG=ACD,DCG=ACB=90°,最后根据直角三角形斜中线的性质得出答案.

详解:(1)①证明:∵∠BCE=90°.EF=FB,CF=BF=EF,∴△BFC是等腰三角形.

②解:结论:CF=DFCFDF.理由如下:

∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点FBE的中点,∴CF=DF=BE=BF,

∴∠1=3,2=4,∴∠5=1+3=21,6=2+4=22,

∴∠CFD=5+6=2(1+2)=2ABC,

又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,

CF=DFCFDF.

(2)(1)中的结论仍然成立.理由如下:

如图,延长DFG使FG=DF,连接BG,CG,DC,FBE的中点,∴BF=EF,

又∵∠BFG=EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=FED,BG=ED,

BGDE,∵△ADEACB都是等腰直角三角形,

DE=DA,DAE=DEA=45°,AC=BC,CAB=CBA=45°,

又∵∠CBG=EBG﹣EBA﹣ABC=DEF﹣(180°﹣AEB﹣EAB)﹣45°

=DEF﹣180°+AEB+EAB﹣45°=(DEF+AEB)+EAB﹣225°

=360°﹣DEA+EAB﹣225°=360°﹣45°+EAB﹣225°=90°+EAB,

而∠DAC=DAE+EAB+CAB=45°+EAB+45°=90°+EAB,

∴∠CBG=DAC,又∵BG=ED,DE=DA,BG=AD,又∵BC=AC,

∴△BCG≌△ACD(SAS),GC=DC,BCG=ACD,

∴∠DCG=DCB+BCG=DCB+ACD=ACB=90°,

∴△DCG是等腰直角三角形,又∵FDG的中点,∴CFDFCF=DF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网