题目内容
【题目】两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.
【答案】△EMC是等腰直角三角形,证明见解析
【解析】
欲判断△EMC的形状,需知道其三边关系.根据题意需证EM=CM,由此证明△EMD≌△CMA即可.依据等腰直角三角形性质易证.
解:△EMC是等腰直角三角形.
理由如下:
连接MA.
∵∠EAD=30°,∠BAC=60°,∴∠DAB=90°,
∵△EDA≌△CAB,∴DA=AB,ED=AC,
∴△DAB是等腰直角三角形.
∴∠MDA=∠MBA=45°
又∵M为BD的中点,
∴∠MAD=∠MAB=45°,AM⊥BD(三线合一),
∴AM==MD,
∴∠EDM=∠MAC=105°,
在△MDE和△MAC中,
∴△MDE≌△MAC.
∴∠DME=∠AMC,ME=MC,
又∵∠DMA=90°,∴∠EMC=∠EMA+∠AMC=∠EMA+∠DME=∠DMA=90°.
∴△MEC是等腰直角三角形.
【题目】某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
产品名称 | 核桃 | 花椒 | 甘蓝 |
每辆汽车运载量(吨) | 10 | 6 | 4 |
每吨土特产利润(万元) | 0.7 | 0.8 | 0.5 |
若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
(1)求y与x之间的函数关系式;
(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
【题目】今年是“五四”运动周年,为进一步弘扬“爱国、进步、民主、科学”的五四精神,引领广大团员青年坚定理想信念,某市团委、少先队共同举办纪念“五四运动周年”读书演讲比赛,甲同学代表学校参加演讲比赛,位评委给该同学的打分(单位:分)情况如下表:
评委 | 评委1 | 评委2 | 评委3 | 评委4 | 评委5 | 评委6 | 评委7 |
打分 |
(1)直接写出该同学所得分数的众数与中位数;
(2)计算该同学所得分数的平均数.