题目内容
在Rt△ABC中,∠ACB=90°,BC=30,AB=50,点P是AB边上任意一点,直线PE⊥AB,与边AC相交于E,此时Rt△AEP∽Rt△ABC,点M在线段AP上,点N在线段BP上,EM=EN,EP:EM=12:13.
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A,C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出x的取值范围.
(1)CM=26;(2)y=50-x,0<x<32
解析试题分析:(1)先根据已知条件得出AC的值,再根据CP⊥AB求出CP,从而得出CM的值;
(2)先根据sin∠EMP=,设出EP的值,从而得出EM和PM的值,再得出△AEP∽△ABC,即可求出,求出a的值,即可得出y关于x的函数关系式,并且能求出x的取值范围.
解: (1)∵∠ACB=90°,
∴,
∵CP⊥AB,
∴
∴,
∴CP=24,
∴;
(2)∵sin∠EMP=,
∴设EP=12a,则EM=13a,PM=5a,
∵EM=EN,
∴EN=13a,PN=5a,
∵△AEP∽△ABC,
∴,
∴,
∴x=16a,
∴,
∴BP=50-16a,
∴y=50-21a=50-21×=50-
∵当E点与A点重合时,x=0.当E点与C点重合时,x=32.
∴x的取值范围是:(0<x<32).
考点:相似三角形的综合题
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.
为提醒人们节约用水,及时修好漏水的水龙头.两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升.
实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如表(漏出的水量精确到1毫升):
时间t(秒) | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
漏出的水量V(毫升) | 2 | 5 | 8 | 11 | 14 | 17 | 20 |
(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?
(3)按此漏水速度,一小时会漏水 千克(精确到0.1千克)
实验二:
小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?
已知二次函数y=ax2+bx+c的图象如图,①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1),其中结论正确的有( )
A.③④ | B.③⑤ | C.③④⑤ | D.②③④⑤ |
若二次函数y=x2﹣2x+c的图象与y轴的交点为(0,﹣3),则此二次函数有( )
A.最小值为-2 | B.最小值为-3 | C.最小值为-4 | D.最大值为-4 |