题目内容
如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB'C',若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是( )A.π
B.π
C.2π
D.4π
【答案】分析:根据阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积,分别求得:扇形BAB′的面积S△AB′C′,S△ABC以及扇形CAC′的面积,即可求解.
解答:解:扇形BAB′的面积是:=,
在直角△ABC中,BC=AB•sin60°=4×=2,AC=AB=2,
S△ABC=S△AB′C′=AC•BC=×2×2=2.
扇形CAC′的面积是:=,
则阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积=-=2π.
故选C.
点评:本题考查了扇形的面积的计算,正确理解阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积是关键.
解答:解:扇形BAB′的面积是:=,
在直角△ABC中,BC=AB•sin60°=4×=2,AC=AB=2,
S△ABC=S△AB′C′=AC•BC=×2×2=2.
扇形CAC′的面积是:=,
则阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积=-=2π.
故选C.
点评:本题考查了扇形的面积的计算,正确理解阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积是关键.
练习册系列答案
相关题目