题目内容
【题目】某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形, ,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)
【答案】(1)图(1)中六边形各角相等;(2)证明见解析(3)猜想:当边数是奇数时(或当边数是3,5,7,9,时),各内角相等的圆内接多边形是正多边形
【解析】试题分析:(1)由题图①知∠AFC对,∠DAF对,根据已知可得,从而可以得到∠AFC=∠DAF,即可得证;
(2)根据已知条件,结合图形不难得到=,继而得到,同理可得到其它狐之间的相等关系,进而证明结论;
(3),根据已知条件进行分析,结合上面的结论写出猜想即可.
试题解析:(1)由图知∠AFC对,
∵,而∠DAF对的,
∴∠AFC=∠DAF.同理可证,其余各角都等于∠AFC,
故图(1)中六边形各角相等;
(2)∵∠A对,∠B对,
又∵∠A=∠B,
∴,
∴,
同理, .
(3)猜想:当边数是奇数时(或当边数是3,5,7,9,时),
各内角相等的圆内接多边形是正多边形.
【题目】为纪念建国70周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随机抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
态度 | 非常喜欢 | 喜欢 | 一般 | 不知道 |
频数 | 90 | b | 30 | 10 |
频率 | a |
请你根据统计图、表提供的信息解答下列问题:
该校这次随机抽取了______名学生参加问卷调查;
确定统计表中的值:______,______;
在统计图中“喜欢”部分扇形所对应的圆心角是______度;
若该校共有2000名学生,估计全校态度为“非常喜欢”的学生有______人