题目内容
【题目】如图,已知在Rt△ABC中,AB=AC,∠BAC=90°,AN是过点A的任一直线,BD⊥AN于点D,CE⊥AN于点E.求证:BD﹣CE=DE.
【答案】证明见解析.
【解析】
试题先根据垂直的定义得到∠AEC=∠BDA=90°,再根据等角的余角相等得到∠ABD=∠CAE,则可利用“AAS”判断△ABD≌△CAE,所以AD=CE,BD=AE,于是有BD-CE=AE-AD=DE.
试题解析:∵CE⊥AN,BD⊥AN,
∴∠AEC=∠BDA=90°,
∴∠BAD+∠ABD=90°,
∵∠BAC=90°,即∠BAD+∠CAE=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中
,
∴△ABD≌△CAE(AAS),
∴AD=CE,BD=AE,
∴BD-CE=AE-AD=DE.
练习册系列答案
相关题目