题目内容
【题目】如图,AC,FC分别平分∠BAD,∠BFD,且分别与FB,AD相交于点G,H,已知∠B=40°,∠D=50°,求∠C的度数.
【答案】45°.
【解析】
由三角形内角和定理得出∠1-∠3=∠C-∠B,同理,∠2-∠4=∠D-∠C,由角平分线定义得出∠1=∠2,∠3=∠4,得出∠C-∠B=∠D-∠C,即可得出∠C的度数.
∵∠B+∠1+∠AGB=180°,∠C+∠3+∠CGF=108°,∠AGB=∠CGF
∴∠B+∠1=∠C+∠3,
∴∠1﹣∠3=∠C﹣∠B,
同理可得:∠2﹣∠4=∠D﹣∠C.
∵AC,FC分别平分∠BAD,∠BFD,
∴∠1=∠2,∠3=∠4,
∴∠C﹣∠B=∠D﹣∠C,
∴∠C(∠B+∠D)×(40°+50°)=45°.
练习册系列答案
相关题目