题目内容
【题目】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格;
多面体 | 顶点数() | 面数() | 棱数() |
四面体 | |||
长方体 | |||
正八面体 | |||
正十二面体 |
(1)你发现顶点数()、面数()、棱数()之间存在的关系式是_______.
(2)正十二面体有个顶点,那它有______条棱;
(3)一个多面体的面数比顶点数大,且有条棱,则这多面体的顶点数是______;
(4)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有个顶点,每个顶点处都有条棱,设该多面体表面三角形的个数为个,八边形的个数为个,求的值.
【答案】填表见解析;(1);(2)30;(3)12;(4)26.
【解析】(1)
多面体 | 顶点数() | 面数() | 棱数() |
四面体 | |||
长方体 | |||
正八面体 | |||
正十二面体 |
(2)条棱
解析:,
(3)解析:顶点数为,,面为
解得
(4)解:∵有个顶点,个顶点确定一条棱,每个顶点个棱
∴(条)
解得
练习册系列答案
相关题目