题目内容
【题目】如图,在矩形ABCD中,AB=6,BC=8,点M,N同时从点B出发,分别在BC,BA上运动,若点M的运动速度是每秒2个单位长度,且是点N运动速度的2倍,当其中一个点到达终点时,停止一切运动.以MN为对称轴作△MNB的对称图形△MNB1.点B1恰好在AD上的时间为______秒.在整个运动过程中,△MNB1与矩形ABCD重叠部分面积的最大值为______.
【答案】
【解析】
(1)如图,当B′与AD交于点E,作FM⊥AD于F,根据轴对称的性质可以得出ME=MB=2t,由勾股定理就可以表示出EF,就可以表示出AE,再由勾股定理就可以求出t的值;
(2)根据三角形的面积公式,分情况讨论,当0<t≤和<t≤4时由求分段函数的方法就可以求出结论.
(1)如下图,当B′与AD交于点E,作FM⊥AD于F.
∴∠DFM=90°.
∵四边形ABCD是矩形,
∴CD=AB.AD=BC.∠D=∠C=90°.
∴四边形DCMF是矩形,
∴CD=MF.
∵△MNB与△MNE关于MN对称,
∴△MNB≌△MNE,
∴ME=MB,NE=BN.
∵BN=t,BM=2t,
∴EN=t,ME=2t.
∵AB=6,BC=8,
∴CD=MF=6,CB=DA=8.AN=6-t
在Rt△MEF和Rt△AEN中,由勾股定理,得
EF=,AE=,
∴+=2t,
∴t=.
(2)如图所示:
∵△MNB1与△MNB关于MN对称,
∴∠MB1N=∠MBN=90°.
∵∠MB1N+∠MBN+∠B1MB+∠B1NB=360°,
∴∠B1MB+∠B1NB=180°.
∵∠B1NA+∠B1NB=180°,
∴∠B1NA=∠B1MB.
在变化过程中,∴∠B1NA不变
由(1)得tan∠B1NA=,
∴tan∠B1MB=.
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠B1FG=∠B1MB.
∵BN=t,BM=2t,
∴B1N=t,MB1=2t.
∵AB=6,BC=8,
∴CD=MF=6,CB=DA=8.AN=6-t
∴GA=(6-t),GN=(6-t),
∵B1G=B1N-GN=t-(6-t)=t-10,
∴B1F=(t-10)×=2t-.
∴当<t≤4时,
S=t2-(2t-)(t-10)=-(t-6)2+,
∴t=4时,S最大=.
当0<t≤时,S=t2.
∴t=时,S最大=.
∵>.
∴最大值为.
故答案为:(1);(2).