题目内容
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1 , x2 , 其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有( )
A.1个
B.2个
C.3个
D.4个
【答案】D
【解析】由抛物线的开口向下知a<0,
与y轴的交点为在y轴的正半轴上,得c>0,
对称轴为x= <1,
∵a<0,
∴2a+b<0,
而抛物线与x轴有两个交点,∴b2﹣4ac>0,
当x=2时,y=4a+2b+c<0,
当x=1时,a+b+c=2.
∵ >2,
∴4ac﹣b2<8a,
∴b2+8a>4ac,
∵①a+b+c=2,则2a+2b+2c=4,
②4a+2b+c<0,
③a﹣b+c<0.
由①,③得到2a+2c<2,
由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,
上面两个相加得到6a<﹣6,
∴a<﹣1.
故答案为:D.
首先依据抛物线的开口方向判断a的符号,然后再根据抛物线与y轴的交点判断c的符号,接下来,依据对称轴及抛物线与x轴交点情况进行进行判断即可.
练习册系列答案
相关题目