题目内容
如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为( )
A. | B. | C. | D. |
C
解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.
∵AB=AC=AD=2,
∴D,C在圆A上,
∵DC∥AB,
∴弧DF=弧BC,
∴DF=CB=1,BF=AB+AF=2AB=4,
∵FB是⊙A的直径,
∴∠FDB=90°,
∴BD= =
故选C
∵AB=AC=AD=2,
∴D,C在圆A上,
∵DC∥AB,
∴弧DF=弧BC,
∴DF=CB=1,BF=AB+AF=2AB=4,
∵FB是⊙A的直径,
∴∠FDB=90°,
∴BD= =
故选C
练习册系列答案
相关题目