题目内容
【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
【答案】(1)y=2x+4;(2)B(﹣3,﹣2);(3)E1(1,0),E2(13,0).
【解析】
试题分析:(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;
(2)求出反比例函数和一次函数的另外一个交点即可;
(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.
解:(1)过点A作AD⊥x轴于D,
∵C的坐标为(﹣2,0),A的坐标为(n,6),
∴AD=6,CD=n+2,
∵tan∠ACO=2,
∴==2,
解得:n=1,经检验n=1为原方程解;
故A(1,6),
∴m=1×6=6,
∴反比例函数表达式为:y=,
又∵点A、C在直线y=kx+b上,
∴,
解得:,
∴一次函数的表达式为:y=2x+4;
(2)由得:=2x+4,
解得:x=1或x=﹣3,
∵A(1,6),
∴B(﹣3,﹣2);
(3)分两种情况:①当AE⊥x轴时,
即点E与点D重合,
此时E1(1,0);
②当EA⊥AC时,
此时△ADE∽△CDA,
则=,
DE==12,
又∵D的坐标为(1,0),
∴E2(13,0).
综上所述,E1(1,0),E2(13,0).
练习册系列答案
相关题目