题目内容

【题目】在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)

(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2

(2)A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.

【答案】(1)画图见解析;(2)(0,2).

【解析】

(1)根据中心对称和平移性质分别作出变换后三顶点的对应点,再顺次连接可得;

(2)根据中心对称的概念即可判断.

(1)如图所示,△A1B1C1和△A2B2C2即为所求;

(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.

点睛:本题考查了中心对称作图和平移作图,熟练掌握中心对称的性质和平移的性质是解答本题的关键. 中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.

型】解答
束】
22

【题目】如图,在矩形ABCD中,点EAD上,且EC平分∠BED.

(1)BEC是否为等腰三角形?证明你的结论.

(2)已知AB=1,ABE=45°,求BC的长.

【答案】(1)见解析;(2) .

【解析】(1)由矩形的性质和角平分线的定义得出DEC=∠ECB=∠BEC,推出BE=BC即可;

(2)求出AE=AB=1,根据勾股定理求出BE即可.

详解:(1) BEC为等腰三角形

∵矩形ABCD,ADBC,

= .

又∵,

,

,

∴△BEC为等腰三角形.

(2)∵矩形ABCD,

.

又∵AB=1,ABE=45°∴由勾股定理得=,

由(1)得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网