题目内容
【题目】如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为( )
A. B. C. D.
【答案】D
【解析】
作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可.
作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,
与OA的交点即为点M,与OB的交点即为点N,
△PMN的最小周长为PM+MN+PN=P1M+MN+P2N=P1P2,即为线段P1P2的长,
连结OP1、OP2,则OP1=OP2=4,
又∵∠P1OP2=2∠AOB=60°,
∴△OP1P2是等边三角形,
∴P1P2=OP1=4,
即△PMN的周长的最小值是4.
故选D.
练习册系列答案
相关题目