题目内容

【题目】根据问题进行证明:
(1)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P,求证:AP=BQ.
(2)如图,已知AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D且∠A=∠D.求∠D的度数.

【答案】
(1)解:∵四边形ABCD为正方形,

∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°,

∵DP⊥AQ,

∴∠ADP+∠DAP=90°,

∴∠BAQ=∠ADP,

∵AQ⊥BE于点Q,DP⊥AQ于点P,

∴∠AQB=∠DPA=90°,

在△AQB和△DPA中,

∴△AQB≌△DPA(AAS),

∴AP=BQ;


(2)如图,连接OC,

∵CD是⊙O 的切线,

∴OC⊥CD,

∴∠OCD=90°,

∴∠COB+∠D=90°,

由圆周角定理得∠COB=2∠A,

∵∠A=∠D,

∴2∠A+∠A=90°,

∴∠A=30°,

∴∠D=30°.


【解析】(1)由正方形的性质知AD=BA、∠BAD=90°,由AQ⊥BE、DP⊥AQ知∠BAQ=∠ADP、∠AQB=∠DPA=90°,即可证△AQB≌△DPA得AP=BQ;(2)由切线的性质知∠OCD=90°即∠COB+∠D=90°,由圆周角定理知∠COB=2∠A,结合∠A=∠D可得答案.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对切线的性质定理的理解,了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网