题目内容
【题目】如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。
(1)求证:DC2=CE·AC;
(2)若AE=2EC,求之值;
(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.
【答案】(1)证明见解析;(2);(3)EC=2
【解析】分析:(1)、根据题意得出△ACD和△DCE相似即可得出答案;(2)、设EC=k,则AE=2k,根据第一题的结论得出DC的长度,连接OC,OD,根据角平分线得出BD和DC的长度,根据Rt△ABC的性质得出AB的长度,从而得出∠BOD和∠DOA的度数,从而得出AD=AO,得出比值;(3)、设EC=k,根据切线的性质得出CG和AH的长度,最后根据△ACH的面积求出k的值.
详解:(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,
∴,∴DC2=CE·AC;
(2)设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,
DC=k,连接OC,OD, ∵CD=BC,∴OC平分∠DOB,∴BC=DC=k,
∵AB是⊙O的直径,∴在Rt△ACB中,,
∴OB=OC=OD=k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴ ;
(3)∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,
过C作CG⊥AB于G, 设EC=k,∵∠CAB=30°,∴,
又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,
∵S△ACH=, ∴,∴k2=4,k=2,即EC=2.
【题目】阳光集团新进了20台电视机和30台电饭煲,计划将这50台电器调配给下属的甲、乙两个商店销售,其中40台给甲商店,10台给乙商店.两个商店销售这两种电器每台的利润(元)如下表:
电视机 | 电饭煲 | |
甲商店/元 | 100 | 60 |
乙商店/元 | 80 | 50 |
(1)设集团调配给甲商店x台电视机,则调配给甲商店电饭煲 台,调配给乙商店电视机 台、电饭煲 台;
(2)求出x的取值范围;
(3)如果阳光集团卖出这50台电器想要获得的总利润为3650元,请求出x的值.