题目内容
(本题满分14分)如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A
点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G。
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等
腰三角形。直接写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当P点运动时,
线段EG的长度是否发生改变,请说明理由。
解:(1) 2分
(2) 4分
(3)一共四个点,(0,),(0,0),(0,),(0,-2)。4分
(4)当P点运动时,线段EG的长度不发生改变,为定值。
当0<t<2时,过G作GH⊥y轴,垂足为H.
由AP=t,可得AE= .
由相似可得GH= ,
所以GC=.
于是,GE=AC-AE-GC= .
即GE的长度不变.
当2<t ≤ 4时,同理可证.
综合得:当P点运动时,线段EG的长度不发生改变,为定值 4分
解析:求函数解析式一般做法是把函数图象上点的坐标代入;另外此题还是几何与代数的结合
练习册系列答案
相关题目