题目内容
【题目】如图,已知ABCO的顶点A、C分别在直线x=2和x=7上,O是坐标原点,则对角线OB长的最小值为_____.
【答案】9
【解析】
过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥x轴,交x轴于点E.则OB=.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,即可得出答案.
解:过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥x轴,交x轴于点E,直线x=2与OC交于点M,与x轴交于点F,
直线x=7与AB交于点N,如图:
∵四边形OABC是平行四边形,
∴∠OAB=∠BCO,OC∥AB,OA=BC,
∵直线x=2与直线x=7均垂直于x轴,
∴AM∥CN,
∴四边形ANCM是平行四边形,
∴∠MAN=∠NCM,
∴∠OAF=∠BCD,
∵∠OFA=∠BDC=90°,
∴∠FOA=∠DBC,
在△OAF和△BCD中,,
∴△OAF≌△BCD(ASA).
∴BD=OF=2,
∴OE=7+2=9,
∴OB=.
∵OE的长不变,
∴当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=9.
故答案为:9.
练习册系列答案
相关题目