题目内容
【题目】平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为. 已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为. 若△ABC的面积为,△的面积为,则用等式表示与的关系为
A. B. C. D.
【答案】D
【解析】
由点P(a,b)经过变换后得到的对应点为可知,点P的横纵坐标先缩小,再向右向下平移;由此可知线段AB,BC,AC的长度变再变换后为原来的,则可以得出答案.
由点P(a,b)经过变换后得到的对应点为可知,点P的横纵坐标先缩小,再向右向下平移.因为点A,B,C变换得到,根据平移的性质,向右向下平移不改变点A,B,C三点的距离,但是横纵坐标先缩小,会使得线段AB,BC,AC的长度变再变换后为原来的,则根据面积公式可知,变换后的面积为原来的.
故答案选择D项.
【题目】某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,下表是y与t的几组对应值,其部分图象如图所示.
t | 0 | 1 | 2 | 3 | 4 | 6 | 8 | 10 | … |
y | 0 | 2 | 4 | 2.83 | 2 | 1 | 0.5 | 0.25 | … |
(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;
(2)结合函数图象,解决下列问题:
①某病人第一次服药后5小时,每毫升血液中的含药量约为_______微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约_______小时;
②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为_______微克.