题目内容
【题目】如图,每个小正方形的边长为1,A、B、C为小正方形的顶点,求证:∠ABC=45°.
【答案】证明:连接AC,则由勾股定理可以得到:AC= ,BC= ,AB= . ∴AC2+BC2=AB2 .
∴△ABC是直角三角形.
又∵AC=BC,
∴∠CAB=∠ABC.
∴∠ABC=45°
【解析】连结AC,先依据勾股定理求得AB、AC、BC的长,然后依据勾股定理的逆定理可求得△ABC为直角三角形,然后依据AC=BC可得到三角形ABC为等腰直角三角形,故此可得到∠ABC=45°.
【考点精析】本题主要考查了等腰直角三角形和勾股定理的概念的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.
练习册系列答案
相关题目
【题目】我市某工艺厂为配合伦敦奥运,设计了一款成本为20元/件的工艺品投入市场进行试销,得到如下数据:
销售单价x (元/件) | …… | 30 | 40 | 50 | 60 | …… |
每天销售量y(件) | …… | 500 | 400 | 300 | 200 | …… |
(1)把上表中x、y的各组对应值作为点的坐标,在右面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为9000元?
(利润=销售总价-成本总价)
(3)根据要求,试销该工艺品每天获得的利润不低于8000元,每天销售量不低于350件,试确定销售单价x(元/件)的取值范围,并求出工艺厂试销该工艺品每天获得的最大利润.