题目内容
【题目】我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦.如图1所示,数学家刘徽(约公元225年—公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图2所示的长方形,是由两个完全相同的“勾股形”拼接而成,若,,则长方形的面积为______.
【答案】12
【解析】
欲求矩形的面积,则求出图1中阴影部分小三角形长直角边边长即可,由此可设其为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,进而可求出该矩形的面积.
解:设如图1阴影部分小三角形长直角边边长为x,
∵,
∴AB=x+3,
在Rt△ABC中,AC2+BC2=AB2,
即(1+x)2+(1+3)2=(x+3)2,
整理得,x=2,
∴该矩形的面积=AC·BC=(1+3)(1+x)=4×3=12
故答案为:12.
练习册系列答案
相关题目
【题目】在3月22日的“世界水资源保护日”当天,我县某校开展“节约用水,从你我做起”的宣传活动,小明利用课余时间对他所居住小区100户居民2月份的用水量进行调查,情况如下表
用水量(m3) | 9 | 10 | 11 | 12 |
户数(户) | 20 | 40 | 30 | 10 |
请根据表中的数据,求这100户居民2月份用水量的众数、中位数和平均数.