题目内容

【题目】乘法公式的探究及应用.

数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.

1)请用两种不同的方法求图2大正方形的面积.

方法1______;方法2______

2)观察图2,请你写出下列三个代数式:(a+b2a2+b2ab之间的等量关系.______

3)类似的,请你用图1中的三种纸片拼一个图形验证:

a+b)(a+2b=a2+3ab+2b2

4)根据(2)题中的等量关系,解决如下问题:

①已知:a+b=5a2+b2=11,求ab的值;

②已知(x-20162+x-20182=34,求(x-20172的值.

【答案】(1) (a+b)2;a2+b2+2ab;(2)(a+b)2=a2+2ab+b2;(3)见解析;(4)①7;②16.

【解析】

1)第一种方法:直接用正方形的面积公式求解;第二种方法将其看做是一个两个正方形和两个长方形,分别求出面积再求和即可.

2)依据(1)中的代数式,即可得到所求的关系;

3)画出长为a+2b,宽为a+b的长方形,即可完成验证;

4)①依据a+b=5,可得(a+b2=25,进而得出a2+b2+2ab=25,再将a2+b2=11,即可得到ab=7;②设x-2017=a,则x-2016=a+1,x-2018=a-1,依据(x-20162+x-20182=34,即可得到∴(a+1)2+(a-1)2=34,然后化简得a2=16,即可完成解答.

解:(1)图2大正方形的面积=(a+b)2;图2大正方形的面积=a2+b2+2ab;

故答案为:(a+b)2;a2+b2+2ab;

(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2

故答案为:(a+b)2=a2+2ab+b2

(3)如图所示,

(4)①∵a+b=5,

∴(a+b)2=25,即a2+b2+2ab=25,

又∵a2+b2=11,

∴ab=7;

②设x-2017=a,则x-2016=a+1,x-2018=a-1,

∵(x-2016)2+(x-2018)2=34,

∴(a+1)2+(a-1)2=34,

∴a2+2a+1+a2-2a+1=34,

∴2a2+2=34,

∴2a2=32,

∴a2=16,

即(x-2017)2=16.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网