题目内容

【题目】观察下列方程的特征及其解的特点.

x=-3的解为x1=-1,x2=-2;

x=-5的解为x1=-2,x2=-3;

x=-7的解为x1=-3,x2=-4.

解答下列问题:

(1)请你写出一个符合上述特征的方程为________,其解为________

(2)根据这类方程的特征,写出第n个方程为________,其解为________

(3)请利用(2)的结论,求关于x的方程x=-2(n+2)(其中n为正整数)的解.

【答案】 x+=-9 x1=-4,x2=-5 x+=-(2n+1) x1=-n,x2=-n-1

【解析】(1)通过观察可知,3个方程中分式的分子有变化,且分子的变化有规律,2=1×2,6=2×3,12=3×4…,等号右边的规律为:-3=-(2×1+1),-5=-(2×2+1),-7=-(2×3+1)…,解的规律:x1=方程序号的相反数,x2=方程序号加1的相反数,由此写出一个符合上述特征的方程和解

(2)根据(1)中的到的规律完成(2);

(3)等号左右两边都加3,可得x+3+=-(2n+1),再依据已知方程的特征及其解的特点解答即可.

(1)x=-9,x1=-4,x2=-5,

(2)x=-(2n+1),x1=-nx2=-n-1,

(3)x=-2(n+2),x+3+=-2(n+2)+3,(x+3)+=-(2n+1),

x+3=-nx+3=-(n+1),

x1=-n-3,x2=-n-4.

检验:当x1=-n-3时,x+3=-n0;

x2=-n-4时,x+3=-n-10.

∴原分式方程的解是x1=-n-3,x2=-n-4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网