题目内容

【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.

(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.

【答案】
(1)

证明:∵四边形ABCD是矩形,

∴AD∥BC,∠A=90°,

∴∠MDO=∠NBO,∠DMO=∠BNO,

在△DMO和△BNO中,

∴△DMO≌△BNO(ASA),

∴OM=ON,

∵OB=OD,

∴四边形BMDN是平行四边形,

∵MN⊥BD,

∴平行四边形BMDN是菱形.


(2)

解:∵四边形BMDN是菱形,

∴MB=MD,

设MD长为x,则MB=DM=x,

在Rt△AMB中,BM2=AM2+AB2

即x2=(8﹣x)2+42

解得:x=5,

即MD=5.

菱形BMDN的面积=MDAB=5×4=20,

∵BD= =4

∵菱形BMDN的面积= BDMN=20,

∴MN=2× =2


【解析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2 , 推出x2=x2﹣32x+256+64,求出MD,菱形BMDN的面积=MDAB,即可得出结果;菱形BMDN的面积=两条对角线长积的一半,即可求出MN的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网