题目内容
【题目】如图所示,△ABC中,AC=BC,以BC为直径作⊙O交AB于点D,交AC于点G,作直线DF⊥AC交AC于点F,交CB的延长线于点E.
(1)求证:直线EF四⊙O的切线;
(2)若BC=6,AB=4,求DE的长.
【答案】(1)、证明过程见解析;(2)、6
【解析】
试题分析:(1)、连结OD,如图,通过证明OD∥AC,加上DF⊥AC,于是可得到DF⊥OD,然后根据切线的判定定理可得DF为⊙O的切线;,(2)、连结CD,作DH⊥BC于H,如图,先利用圆周角定理得到∠BDC=90°,则根据等腰三角形的性质得BD=AD=AB=2,在Rt△BDC中可利用勾股定理计算出CD=2,再利用面积法克计算出DH=2,接着根据勾股定理计算出OH=1,然后证明Rt△ODH∽Rt△OED,利用相似比可计算出DE.
试题解析:(1)、连结OD,如图,∵AC=BC,∴∠A=∠ABC,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠A,
∴OD∥AC,而DF⊥AC,∴DF⊥OD,∴DF为⊙O的切线;
(2)、连结CD,作DH⊥BC于H,如图,∵BC为直径,∴∠BDC=90°,而CA=CB,∴BD=AD=AB=2,
在Rt△BDC中,CD==2,∵DHBC=DECD,∴DH==2,
在Rt△ODH中,OH==1,∵∠DOH=∠EOD,∴Rt△ODH∽Rt△OED,∴=,即=,
∴DE=6.
练习册系列答案
相关题目