题目内容
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
【答案】
(1)
【解答】解:根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),
把点A(0,4)代入上式得:a=,
∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,
∴抛物线的对称轴是:x=3;
(2)
P点坐标为(3,).
理由如下:
∵点A(0,4),抛物线的对称轴是x=3,
∴点A关于对称轴的对称点A′的坐标为(6,4)
如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.
设直线BA′的解析式为y=kx+b,
把A′(6,4),B(1,0)代入得,
解得,
∴y=x﹣,
∵点P的横坐标为3,
∴y=×3﹣=,
∴P(3,).
(3)
在直线AC的下方的抛物线上存在点N,使△NAC面积最大.
设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),
如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,
由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,
把x=t代入得:y=﹣t+4,则G(t,﹣t+4),
此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,
∵AD+CF=CO=5,
∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NGOC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,
∴当t=时,△CAN面积的最大值为,
由t=,得:y=t2﹣t+4=﹣3,
∴N(,﹣3).
【解析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;
(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.
(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.
【题目】国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:
类别 | 彩电 | 冰箱 | 洗衣机 |
进价(元/台) | 2000 | 1600 | 1000 |
售价(元/台) | 2300 | 1800 | 1100 |
若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.
(1)商店至多可以购买冰箱多少台?
(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?