题目内容

已知:在矩形A0BC中,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.E是边AC上的一个动点(不与A,C重合),过E点的反比例函数y=
k
x
(k>0)
的图象与BC边交于点F.
(1)若△OAE、△OBF的面积分别为S1、S2且S1+S2=2,求k的值;
(2)若OB=4,OA=3,记S=S△OEF-S△ECF问当点E运动到什么位置时,S有最大值,其最大值为多少?
(3)请探索:是否存在这样的点E,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点E的坐标;若不存在,请说明理由.
(1)∵点E、F在函数y=
k
x
(k>0)的图象上,
∴设E(x1
k
x1
),F(x2
k
x2
),x1>0,x2>0,
S1=
1
2
x1
k
x1
=
K
2
,S2=
1
2
x2
k
x2
=
K
2

∵S1+S2=2,
K
2
+
K
2
=2,
∴k=2;

(2)由题意知:E,F两点坐标分别为E(
k
3
,3)
F(4,
k
4
)

S△ECF=
1
2
EC•CF=
1
2
(4-
1
3
k)(3-
1
4
k)

∴S△EOF=S矩形AOBC-S△AOE-S△BOF-S△ECF
=12-
1
2
k-
1
2
k-S△ECF
=12-k-S△ECF
∴S=S△OEF-S△ECF
=12-k-2S△ECF
=12-k-2×
1
2
(4-
1
3
k)(3-
1
4
k),
S=-
1
12
k2+k

k=-
1
2×(-
1
12
)
=6
时,S有最大值.S最大值=
-1
4×(-
1
12
)
=3

此时,点E坐标为(2,3),即点E运动到AC中点.

(3)设存在这样的点E,将△CEF沿EF对折后,C点恰好落在OB边上的M点,过点E作EN⊥OB,垂足为N.
由题意得:EN=AO=3,EM=EC=4-
1
3
k
MF=CF=3-
1
4
k

∵∠EMN+∠FMB=∠FMB+∠MFB=90°,
∴∠EMN=∠MFB.
又∵∠ENM=∠MBF=90°,
∴△ENM△MBF.
EN
MB
=
EM
MF

3
MB
=
4-
1
3
k
3-
1
4
k
=
4(1-
1
12
k)
3(1-
1
12
k)

MB=
9
4

∵MB2+BF2=MF2
(
9
4
)2+(
k
4
)2=(3-
1
4
k)2

解得k=
21
8

EM=EC=4-
k
3
=
25
8

故AE=
7
8

∴存在符合条件的点E,它的坐标为(
7
8
,3).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网