题目内容

(1)已知△ABC中,D、E分别是边AB、AC上的点,∠A=80°,∠C=70°,∠ADE=30°.求证:DE∥BC.
(2)阅读并补全下列命题的证明过程:
求证:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行.
已知:如图,直线AB、CD、EF在同一平面内,AB⊥EF于点M,CD⊥EF于点N.
求证:______.
证明:∵AB⊥EF(已知),
∴∠AME=90°(垂直的定义).
∵CD⊥EF(已知),
∴∠CNE=90°(垂直的定义).
∵∠______=∠______.
∴______∥______.

(1)证明:∵∠A=80°,∠C=70°,
∴∠B=180°-∠A-∠C=180°-80°-70°=30°,
∵∠ADE=30°,
∴∠ADE=∠B=30°,
∴DE∥BC(同位角相等,两直线平行);

(2)求证:AB∥CD,
证明:∵AB⊥EF(已知),
∴∠AME=90°(垂直的定义).
∵CD⊥EF(已知),
∴∠CNE=90°(垂直的定义).
∵∠AME=∠CNE,
∴AB∥CD.
故答案为:AB∥CD,∠AME,∠CNE,AB,CD.
分析:(1)根据三角形的内角和定理求出∠B=30°,再根据同位角相等,两直线平行即可判定DE∥BC;
(2)结合图形,根据证明过程可得∠AME=∠CNE,又这两个角是同位角,然后根据同位角相等两直线平行进行解答.
点评:本题考查了平行线的判定,分析图形找出同位角相等是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网