题目内容

【题目】如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.

(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.

【答案】
(1)

解:补全图形,如图所示;


(2)

解:由旋转的性质得:∠DCF=90°,

∴∠DCE+∠ECF=90°,

∵∠ACB=90°,

∴∠DCE+∠BCD=90°,

∴∠ECF=∠BCD,

∵EF∥DC,

∴∠EFC+∠DCF=180°,

∴∠EFC=90°,

在△BDC和△EFC中,

∴△BDC≌△EFC(SAS),

∴∠BDC=∠EFC=90°.


【解析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网