题目内容

【题目】如图,已知 两点的坐标分别为,点分别是直线x轴上的动点,,是线段的中点,连接轴于点;当⊿面积取得最小值时,的值是(

A.B.C.D.

【答案】B

【解析】

如图,设直线x=-5x轴于K.由题意KD=CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,ABE的面积最小,作EHABH.求出EHAH即可解决问题.

如图,设直线x=-5x轴于K.由题意KD=CF=5

∴点D的运动轨迹是以K为圆心,5为半径的圆,

∴当直线AD与⊙K相切时,ABE的面积最小,

AD是切线,点D是切点,

ADKD

AK=13DK=5

AD=12

tanEAO=

OE=

AE=

EHABH

SABE=ABEH=SAOB-SAOE

EH=

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网