题目内容
如图,在平面直角坐标系中,以点M(0,)为圆心,作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于点P,连接PC交x轴于点E,连接DB,∠BDC=30°.
(1)求弦AB的长;
(2)求直线PC的函数解析式;
(3)连接AC,求△ACP的面积.
(1)解:∵CD⊥AB,CD为直径,
∴弧AC=弧BC,
∴∠AMO=2∠P=2∠BDC=60°,
∵MA=MC,
∴△MAC是等边三角形,
∴MA=AC=MC,
∵x轴⊥y轴,
∴∠MAO=30°,
∴AM=2OM=2,
由勾股定理得:AO=3,
由垂径定理得:AB=2AO=6.
(2)解:连接PB,
∵AP为直径,
∴PB⊥AB,∴PB=AP=2,
∴P(3,2),
∵MA=AC,AO⊥MC,
∴OM=OC=,
C(0,-)
设直线PC的解析式是y=kx+b,代入得:,
解得:k=,b=-,
∴y=x-.
(3)解:P(3,2),
∴S△ACP=S△ACM+S△CPM,
=×2×3+×2×3=6,
答:△ACP的面积是6.
分析:(1)求出∠AMO的度数,得出等边三角形AMC,求出CM、OM,根据勾股定理求出OA,根据垂径定理求出AB即可;
(2)连接PB,求出PB饿值,即可得出P的坐标,求出C的坐标,设直线PC的解析式是y=kx+b,代入求出即可;
(3)分别求出△AMC和△CMP的面积,相加即可求出答案.
点评:本题综合考查了勾股定理,垂径定理,圆周角定理,三角形的面积,用待定系数法求一次函数的解析式等知识点的运用,主要考查学生综合运用这些定理进行推理和计算的能力,本题综合性比较强,但难度适中,是一道比较好的题目.
∴弧AC=弧BC,
∴∠AMO=2∠P=2∠BDC=60°,
∵MA=MC,
∴△MAC是等边三角形,
∴MA=AC=MC,
∵x轴⊥y轴,
∴∠MAO=30°,
∴AM=2OM=2,
由勾股定理得:AO=3,
由垂径定理得:AB=2AO=6.
(2)解:连接PB,
∵AP为直径,
∴PB⊥AB,∴PB=AP=2,
∴P(3,2),
∵MA=AC,AO⊥MC,
∴OM=OC=,
C(0,-)
设直线PC的解析式是y=kx+b,代入得:,
解得:k=,b=-,
∴y=x-.
(3)解:P(3,2),
∴S△ACP=S△ACM+S△CPM,
=×2×3+×2×3=6,
答:△ACP的面积是6.
分析:(1)求出∠AMO的度数,得出等边三角形AMC,求出CM、OM,根据勾股定理求出OA,根据垂径定理求出AB即可;
(2)连接PB,求出PB饿值,即可得出P的坐标,求出C的坐标,设直线PC的解析式是y=kx+b,代入求出即可;
(3)分别求出△AMC和△CMP的面积,相加即可求出答案.
点评:本题综合考查了勾股定理,垂径定理,圆周角定理,三角形的面积,用待定系数法求一次函数的解析式等知识点的运用,主要考查学生综合运用这些定理进行推理和计算的能力,本题综合性比较强,但难度适中,是一道比较好的题目.
练习册系列答案
相关题目