题目内容
【题目】如图所示,⊙O中,弦AC、BD交于E,.
(1)求证:;
(2)延长EB到F,使EF=CF,试判断CF与⊙O的位置关系,并说明理由.
【答案】(1)详见解析;(2)CF与⊙O相切,理由详见解析.
【解析】
(1)连接BC,由=2,得=,则∠ABD=∠ACB,得到△ABE∽△ABC,所以AB2=AEAC;
(2)连接AO、CO,由A为中点,得到AO⊥DB,得到∠OAC+∠AED=90°,所以∠OAC+∠FEC=90°,而EF=CF,则∠FEC=∠ECF,又∠OAC=∠OCA,所以∠OAC+∠FEC=∠OCA+∠ECF=90°,即得到CF与⊙O相切.
证明:(1)连接BC,如图,
∵=2.
∴=.
∴∠ABD=∠ACB,
而∠CAB公用,
∴△ABE∽△ABC,
∴
∴
(2)CF与⊙O相切.理由如下:
连接AO、CO,
∵A为中点,
∴AO⊥DB,
∴∠OAC+∠AED=90°
∵∠AED=∠FEC,
∴∠OAC+∠FEC=90°,
又∵EF=CF,
∴∠FEC=∠ECF,
∵AO=OC,
∴∠OAC=∠OCA,
∴∠OAC+∠FEC=∠OCA+∠ECF=90°,
∴FC与⊙O相切.
【题目】有这样一个题目:
按照给定的计算程序,确定使代数式n(n+2)大于2000的n的最小正整数值.想一想,怎样迅速找到这个n值,请与同学们交流你的体会.
小亮尝试计算了几组n和n(n+2)的对应值如下表:
n | 50 | 40 | |
n(n+2) | 2600 | 1680 |
(1)请你继续小亮的尝试,再算几组填在上表中(几组随意,自己画格),并写出满足题目要求的n的值;
(2)结合上述过程,对于“怎样迅速找到n值”这个问题,说说你的想法.
【题目】如图,已知是()的函数,表1中给出了几组与的对应值:
表1:
… | 1 | 2 | 3 | … | ||||
… | 6 | 3 | 2 | 1 | … |
(1)以表中各对对应值为坐标,在图1的直角坐标系中描出各点,用光滑曲线顺次连接.由图像知,它是我们已经学过的哪类函数?求出函数解析式,并直接写出的值;
(2)如果一次函数图像与(1)中图像交于和两点,在第一、四象限内当在什么范围时,一次函数的值小于(1)中函数的值?请直接写出答案.
【题目】某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量是 ,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.
发言次数n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |