题目内容
【题目】如图,点A、B、C的坐标分别为(﹣3,1)、(﹣4,﹣1)、(﹣1,﹣1),将△ABC先向下平移2个单位,得△A1B1C1;再将△A1B1C1沿y轴翻折180°,得△A2B2C2;.
(1)画出△A1B1C1和△A2B2C2;
(2)求直线A2A的解析式.
【答案】(1)见解析;(2)
【解析】分析:(1)将△ABC的三个顶点分别向下平移2个单位,得到新的对应点,顺次连接得△A1B1C1;再从△A1B1C1三个顶点向y轴引垂线并延长相同单位,得到新的对应点,顺次连接,得△A2B2C2;
(2)设直线A2A的解析式为y=kx+b,再把点A(﹣3,1),A2(3,﹣1)代入,用待定系数法求出它的解析式.
详解:(1)如图所示:△A1B1C1,△A2B2C2即为所求;
(2)设直线A2A的解析式为y=kx+b
把点的坐标A(﹣3,1)A2的坐标(3,﹣1)代入上式得:
,
解得:,
所以直线A2A的解析式为.
【题目】某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:
候选人 | 面试 | 笔试 | ||
形体 | 口才 | 专业水平 | 创新能力 | |
甲 | 86 | 90 | 96 | 92 |
乙 | 92 | 88 | 95 | 93 |
若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
【题目】某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.
设小明计划今年夏季游泳次数为x(x为正整数).
(I)根据题意,填写下表:
游泳次数 | 10 | 15 | 20 | … | x |
方式一的总费用(元) | 150 | 175 | ______ | … | ______ |
方式二的总费用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.