题目内容
【题目】已知:如图,在中,,,.点从点开始沿边向点以的速度移动,同时点从点开始沿边向点以的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为秒,
求几秒后,的面积等于?
求几秒后,的长度等于?
运动过程中,的面积能否等于?说明理由.
【答案】(1)或秒后的面积等于;(2)当或时,的长度等于;(3)的面积不能等于.
【解析】
(1)设经过x秒钟,△PBQ的面积等于6平方厘米,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.
(2)根据PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(3)通过判定得到的方程的根的判别式即可判定能否达到8cm2.
(1)设经过x秒以后△PBQ面积为6
×(5x)×2x=6
整理得:x25x+6=0
解得:x=2或x=3
答:2或3秒后△PBQ的面积等于6cm2.
当时,在中,∵,
∴,
,
,
,,
∴当或时,的长度等于.
设经过秒以后面积为,
整理得:
∴的面积不能等于.
练习册系列答案
相关题目