题目内容
【题目】如图,已知AD是△ABC的中线,且∠DAC=∠B,CD=CE.
(1)求证: ;
(2)若AB=15,BC=10,试求AC与AD的长.
【答案】(1)见解析;(2)
【解析】
(1)先利用等腰三角形的性质,由CD=CE得到∠CED=∠EDC,则可根据等角的补角相等得到∠AEC=∠ADB,加上∠DAC=∠B,于是可根据有两组角对应相等的两个三角形相似判断△ACE∽△BAD.
(2)由∠DAC=∠B及公共角相等证明△ACD∽△BCA,利用相似比求AC,再由(1)的结论△ACE∽△BAD,利用相似比求AD.
(1)证明:∵CD=CE,
∴∠CED=∠EDC,
∵∠AEC+∠CED=180°,∠ADB+∠EDC=180°,
∴∠AEC=∠ADB,
∵∠DAC=∠B
∴△ACE∽△BAD.
(2)∵∠DAC=∠B,∠ACD=∠BCA,
∴△ACD∽△BCA,
即
∵△ACE∽△BAD,
即
【题目】某商品的进价为每件20元,售价为每件30元,每月可卖出180件,如果该商品计划涨价销售,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.
(1)分析数量关系填表:
每台售价(元) | 30 | 31 | 32 | …… | 30+x |
月销售量(件) | 180 | 170 | 160 | …… | _____ |
(2)求y与x之间的函数解析式和x的取值范围
(3)当售价x(元/件)定为多少时,商场每月销售这种商品所获得的利润y(元)最大?最大利润是多少?
【题目】垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对八年级甲,乙两班各60名学生进行了垃极分类相关知识的测试,并分别抽取了15份成绩,整理分析过程如下,请补充完整.
(收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名学生测试成绩统计如下:《满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)
(1)按如下分数段整理、描述这两组样本数据
组别 频数 | 65.5~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
甲 | 2 | 2 | 4 | 5 | 1 | 1 |
乙 | 1 | 1 | a | b | 2 | 0 |
在表中,a= ,b= .
(2)补全甲班15名学生测试成绩频数分布直方图:
(分析数据)
(3)两组样本数据的平均数、众数、中位数、方差如下表所示:
班级 | 平均数 | 众数 | 中位数 | 方差 |
甲 | 80 | x | 80 | 47.6 |
乙 | 80 | 80 | y | 26.2 |
在表中:x= ,y= .
(4)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃极分类及投放相关知识合格的学生有 人.
(5)你认为哪个班的学生掌握垃圾分类相关知识的整体水平较好,说明理由.