题目内容
【题目】如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是( )
A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.当a= 时,△ABD是等腰直角三角形
【答案】D
【解析】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣ =1,
∴2a+b=0,
∴选项A错误;
∴当自变量取1时,对应的函数图象在x轴下方,
∴x=1时,y<0,则a+b+c<0,
∴选项B错误;
∵A点坐标为(﹣1,0),
∴a﹣b+c=0,而b=﹣2a,
∴a+2a+c=0,
∴3a+c=0,
∴选项C错误;
当a= ,则b=﹣1,c=﹣ ,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣ ,把x=1代入得y= ﹣1﹣ =﹣2,
∴D点坐标为(1,﹣2),
∴AE=2,BE=2,DE=2,
∴△ADE和△BDE都为等腰直角三角形,
∴△ADB为等腰直角三角形,
∴选项D正确.
故选D.
【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.
练习册系列答案
相关题目