题目内容
【题目】如图,在□ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H。
(1)求证:△BAE∽△BCF
(2)若BG=BH,求证四边形ABCD是菱形
【答案】(1)略
(2)略
【解析】
证明(1)∵BE⊥AD,BF⊥CD
∴∠BEA=∠BFC=90° ………………(1')
又ABCD是平行四边形,
∴∠BAE=∠BCF ……………………(2')
∴△BAE∽△BCF …………………………………………(3')
(2)∵△BAE∽△BCF
∴∠1=∠2 ……………………………………………(4')
又BG=BH ∴∠3=∠4
∴∠BGA=∠BHC ………………………………………………(5')
∴△BGA≌△BHC(ASA) ……………………………………(6')
∴AB=BC ……………………………………………………(7')
∴□ABCD为菱形……………………………………………(8')
练习册系列答案
相关题目