题目内容
【题目】在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.
(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,
易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;
(2)将图1中的Rt△EGF绕点O顺时针旋转角度α(0<α<45). 如图2,在旋转过程中,当∠MDC=15时,连接MN,若AC=BC=2,请求出写出线段MN的长;
(3) 图3, 旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE时,线段EM与EN的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是__________.
【答案】 NE=2ME EN=(m-1)ME
【解析】分析:(1)易证△CDM≌△BDN,从而得出DM=DN 即EM=EN;
(2)作DP⊥AC于P,通过解直角三角形DPM得出DM=,由△MND为等腰直角三角形得出结论;
(3)过点E作EP⊥AB交AC于点P,则△AEP为等腰直角三角形,通过证明△PME∽△BNE,得到EN=2EM,由此规律可知,当AB=m·AE时,EN=(m-1)·ME
详解:(1)EM=EN;原因如下:
∵∠ACB=90° AC=BC D是AB边上的中点
∴DC=DB ∠ACD=∠B=45° ∠CDB=90°
∴∠CDF+∠FDB=90°
∵∠GDF=90°∴∠GDC+∠CDF=90°∴∠CDM=∠BDN
在△CDM和△BDN中
∠MCD=∠B,DC=DB,∠CDM=∠BDN,
∴△CDM≌△BDN ∴DM=DN 即EM=EN
(2)作DP⊥AC于P,则
∠CDP=45° CP=DP=AP=1
∵∠CDG=15° ∴∠MDP=30°
∵cos∠MDP=
∴DM=, DM=DN,
∵△MND为等腰直角三角形
∴MN=
(3)NE=2ME,EN=(m-1)ME
证明:如图3,过点E作EP⊥AB交AC于点P
则△AEP为等腰直角三角形,∠PEB=90°
∴AE=PE ∵AB=3AE ∴BE=2AE ∴BE=2PE
又∵∠MEP+∠PEN=90°
∠PEN+∠NEB=90°
∴∠MEP=∠NEB
又∵∠MPE=∠B=45°
∴△PME∽△BNE
∴,即EN=2EM
由此规律可知,当AB=m·AE时,EN=(m-1)·ME