题目内容
若m是关于x的一元二次方程x2+nx+m=0的根,且m≠0,则m+n的值为
- A.-1
- B.1
- C.
- D.
A
分析:根据一元二次方程的解的定义,将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.
解答:∵m是关于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得,m+n=-1;
故选A.
点评:本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.
分析:根据一元二次方程的解的定义,将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.
解答:∵m是关于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得,m+n=-1;
故选A.
点评:本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.
练习册系列答案
相关题目