题目内容

【题目】如图,已知射线AB与直线CD交于点OOF平分∠BOCOGOF于点OAEOF,且∠A30°.

(1)求∠DOF的度数;

(2)试说明OD平分∠AOG.

【答案】(1)∠AOD60°;(2)见解析.

【解析】

(1)根据两直线平行,同位角相等可得∠FOB=A=30,再根据角平分线的定义求出∠COF=FOB=30,然后根据平角等于180列式进行计算即可得解;

(2)先求出∠DOG=60,再根据对顶角相等求出∠AOD=60,然后根据角平分线的定义即可得解.

解:(1)AEOF,∴∠BOF=∠A30°

OF平分∠BOC,∴∠COF=∠BOF30°,∠DOF180°-∠COF150°

 (2)(1)知∠COF=∠BOF30°,∴∠BOC60°,∠AOD=∠BOC60°

OGOF,∴∠BOG90°-∠BOF60°

∴∠DOG180°-∠BOC-∠BOG180°60°60°60°

∴∠AOD=∠DOG=60°,∴OD平分∠AOG.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网