题目内容
【题目】如图,反比例函数y=的图象与一次函数y=ax﹢b的图象交于C(4,﹣3),E(﹣3,4)两点.且一次函数图象交y轴于点A.
(1)求反比例函数与一次函数的解析式;
(2)求△COE的面积;
(3)点M在x轴上移动,是否存在点M使△OCM为等腰三角形?若存在,请你直接写出M点的坐标;若不存在,请说明理由.
【答案】(1)一次函数的解析式为y=﹣x+1.
(2)S△COE=S△AOE+S△AOC=×1×3+×1×4=3.5.
(3)点M坐标为M1(8,0)或M2(5,0)或M3(﹣5,0)或M4(,0).
【解析】
试题分析:(1)点C(4,﹣3)坐标代入反比例函数y=即可求出k,C(4,﹣3),E(﹣3,4)两点坐标代入y=ax+b解方程组即可求出a、b.由此即可解决问题.
(2)先求出点A坐标,根据S△COE=S△AOE+S△AOC计算即可.
(3)分三种情形①当CM=OC时,可得M1(8,0).②当OC=OM时,可得M2(5,0),M3(﹣5,0).②当MC=MO时,设M4(x,0),则有x2=(x﹣4)2+32,解方程即可.
试题解析:(1)∵反比例函数y=的图象经过点C(4,﹣3),
∴﹣3=,∴k=﹣12,∴反比例函数解析式为y=﹣,
∵y=ax+b的图象经过C(4,﹣3),E(﹣3,4)两点,
∴,解得,∴一次函数的解析式为y=﹣x+1.
(2)∵一次函数的解析式为y=﹣x+1与y轴交于点A(0,1),∴S△COE=S△AOE+S△AOC=×1×3+×1×4=3.5.
(3)如图,∵C(4,﹣3),∴OC==5,
①当CM=OC时,可得M1(8,0).②当OC=OM时,可得M2(5,0),M3(﹣5,0).
②当MC=MO时,设M4(x,0),则有x2=(x﹣4)2+32,解得x=,∴M4(,0).
综上所述,点M坐标为M1(8,0)或M2(5,0)或M3(﹣5,0)或M4(,0).
【题目】第二十四届冬季奥林匹克运动会将与2022年2月20日在北京举行,北京将成为历史上第一座举办过夏奥会又举办过冬奥会的城市,东宝区举办了一次冬奥会知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.
(收集数据)
从甲、乙两校各随机抽取20名学生,在这次竞赛中它们的成绩如下:
甲 | 30 | 60 | 60 | 70 | 60 | 80 | 30 | 90 | 100 | 60 |
60 | 100 | 80 | 60 | 70 | 60 | 60 | 90 | 60 | 60 | |
乙 | 80 | 90 | 40 | 60 | 80 | 80 | 90 | 40 | 80 | 50 |
80 | 70 | 70 | 70 | 70 | 60 | 80 | 50 | 80 | 80 |
(整理、描述数据)按如下分数段整理、描述这两组样本数据:
(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)
学校 | 平均分 | 中位数 | 众数 |
甲 | 67 | 60 | 60 |
乙 | 70 | 75 | a |
30≤x≤50 | 50<x≤80 | 80<x≤100 | |
甲 | 2 | 14 | 4 |
乙 | 4 | 14 | 2 |
(分析数据)两组样本数据的平均分、中位数、众数如右表所示:其中a= .
(得出结论)
(1)小伟同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是 校的学生;(填“甲”或“乙”)
(2)老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为 ;
(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)