题目内容
【题目】平面直角坐标系中,直线y=2kx-2k (k>0)交y轴于点B,与直线y=kx交于点A.
(1)求点A的横坐标;
(2)直接写出的x的取值范围;
(3)若P(0,3)求PA+OA的最小值,并求此时k的值;
(4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.
【答案】(1)点横坐标为2;(2);(3);(4)或.
【解析】
(1)联立两直线方程即可得出答案;
(2)先根据图像求出k的取值范围,再解不等式组即可得出答案;
(3)先求出点关于直线的对称点为的坐标,连接交直线于点,此时最小,根据将和P的坐标求出直线的解析式,再令x=2,求出y的值,即可得出点A的坐标,再将点A的坐标代入y=kx中即可得出答案;
(4)根据题意得出△ABC为等腰三角形,且BC为腰,再根据A、B和C的坐标分别求出AB、BC和AC的长度,分情况进行讨论:①当时,②当时,即可得出答案.
解:(1)根据题意得
,解得
点横坐标为2;
(2)由图像可知k>0
∴由2kx-2k>0,可得x>1;由2kx-2k<kx,得x<2,
∴
(3)如图,点关于直线的对称点为;
连接交直线于点,此时最小,
其值为;
设直线的解析式为y=ax+b
将和P的坐标代入得:
解得
∴直线的解析式为,
当x=2时,y=
.即,;
(4)以为顶点的四边形是以为一条边的菱形,
为等腰三角形,且为腰;
或,
①当时,,,解得;
②当时,,,
解得.
或
练习册系列答案
相关题目