题目内容
【题目】甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)写出表格中a,b,c的值:a= ,b= ,c= .
(2)如果乙再射击一次,命中7环,那么乙的射击成绩的方差 .(填“变大”“变小”“不变”)
(3)教练根据这10次成绩若选择甲参加比赛,教练的理由是什么?
【答案】(1)a=7,b=7.5,c=4.2;(2)变小;(3)因为他们的平均数相同,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛
【解析】
(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
(2)如果乙再射击一次,命中7环,那么乙的射击成绩的平均数不变,求得方差即可得出结论;
(3)他们的平均数相同,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.
解:(1)甲的平均成绩a==7(环),
甲的成绩的众数c=7(环),
∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数b==7.5(环),
其方差d=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2;
故答案为:7,7.5,4.2;
(2)如果乙再射击一次,命中7环,那么乙的射击成绩的平均数不变,方差为:
×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2+(7﹣7)2]
=×(16+9+1+3+4+9)
=<4.2;
∴乙的射击成绩的方差变小,
故答案为:变小;
(3)因为他们的平均数相同,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.