题目内容
【题目】已知内接于圆,点为弧上一点,连接交于点,.
(1)如图1,求证:弧弧;
(2)如图2,过作于点,交圆点,连接交于点,且,求的度数;
(3)如图3,在(2)的条件下,圆上一点与点关于对称,连接,交于点,点为弧上一点,交于点,交的延长线于点,,的周长为20,,求圆半径.
【答案】(1)见解析;(2)∠CAG=45°;(3)r=
【解析】
(1)证∠ABD=∠ACB可得;
(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合,证△ALE≌△AHE,利用勾股定理逆定理推导角度;
(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD.先证△AEN≌△QUD,再证△NVE≌△RKU,可得到NV=KR=DK,进而求得OB的长.
(1)∵∠CED是△BEC的外角,∴∠CED=∠EBC+∠BCA
∵∠ABC=∠ABD+∠EBC
又∵∠CED=∠ABC
∴∠ABD=∠ACB
∴弧AB=弧AD
(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合
∵△ALB是△AHD旋转所得
∴∠ABL=∠ADB,AL=AH
设∠CAG=a,则∠CBG=a
∵BG⊥AC
∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a
∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a
∴∠LAE=∠EAH=a
∵LA=AH,AE=AE
∴△ALE≌△AHE,∴LE=EH
∵HD=LB,
∴△LBE为直角三角形
∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°
∴∠CAG=45°
(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD
由(2)得∠BAD=90°
∴点O在BD上
设∠R=n,则∠SER=∠BEC=∠MEB=90°-n
∴∠AEN=2n
∵SQ⊥AC
∴∠TAS=∠AQS=∠DQR,AN=QD
∵QU=AE
∴△AEN≌△QUD
∴∠QUD=∠AEN=2n
∴UD=UR=NE,
∵△ANE的周长为20
∴QD+QR=20
在△DQR中,QD=7
∵∠ENR=∠UDK=∠R=n
∴△NVE≌△RKU
∴NV=KR=DK=
∴BN=5
∴BD=12,OB=6