题目内容
(本题满分12分)如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C
为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
【答案】
解:(1)在Rt△ABC中,由AB=1,BC=得 AC==
∵BC=CD,AE=AD
∴AE=AC-AD=.
(2)∠EAG=36°,理由如下:
∵FA=FE=AB=1,AE=
∴=
∴△FAE是黄金三角形
∴∠F=36°,∠AEF=72°
∵AE=AG,FA=FE
∴∠FAE=∠FEA=∠AGE
∴△AEG∽△FEA
∴∠EAG=∠F=36°.
【解析】略
练习册系列答案
相关题目
(本题满分12分)
如图,的顶点A、B在二次函数的图像上,又点A、B[来分别在轴和轴上,∠ABO=.
1.(1)求此二次函数的解析式;(4分)
2.
|
点在上述函数图像上,当与相似时,求点的坐标.(8分)