题目内容
【题目】已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠COE=40°时,求∠AOB的度数.
解:∵OE是∠COB的平分线,
∴∠COB=________(理由:________).
∵∠COE=40°,
∴________.
∵∠AOC=________,
∴∠AOB=∠AOC+________=110°.
【答案】2∠COE|角平分线定义|∠COB=80°|30°|∠COB
【解析】解:∵OE是∠COB的平分线,
∴∠COB=2∠COE(角平分线定义).
∵∠COE=40°,
∴∠COB=80°.
∵∠AOC=30°,
∴∠AOB=∠AOC+∠COB=110°.
故答案是:2∠COE,角平分线定义,∠COB=80°,30°,∠COB.
根据角平分线线的定义求得∠COB=80°.然后根据图中角与角间的和差关系得到∠AOB=∠AOC+∠COB=110°.
练习册系列答案
相关题目
【题目】某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:
A种产品 | B种产品 | |
成本(万元/件) | 2 | 5 |
利润(万元/件) | 1 | 3 |
(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.