题目内容
【题目】如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.
(1)求证:AD平分∠BAC;
(2)求AC的长.
【答案】(1)证明见解析;(2)AC=.
【解析】
试题分析:(1)首先连接OD,由BD是⊙O的切线,AC⊥BD,易证得OD∥AC,继而可证得AD平分∠BAC;
(2)由OD∥AC,易证得△BOD∽△BAC,然后由相似三角形的对应边成比例,求得AC的长.
(1)证明:连接OD,
∵BD是⊙O的切线,
∴OD⊥BD,
∵AC⊥BD,
∴OD∥AC,
∴∠2=∠3,
∵OA=OD,
∴∠1=∠3,
∴∠1=∠2,
即AD平分∠BAC;
(2)解:∵OD∥AC,
∴△BOD∽△BAC,
∴,
∴,
解得:AC=.
练习册系列答案
相关题目
【题目】某商家计划从厂家采购空调和冰箱两种产品共台,空调和冰箱的采购单价与销售单价如表所示:
采购单价 | 销售单价 | |
空调 | ||
冰箱 |
若采购空调台,且所采购的空调和冰箱全部售完,求商家的利润;
厂家有规定,采购空调的数量不少于台,且空调采购单价不低于元,问商家采购空调多少台时总利润最大?并求最大利润.