题目内容
【题目】如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F. ①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=S△COF?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)E(8,0);
(2)y=﹣x+6
(3)①54;②点P的坐标为(6,0)或(﹣6,0).
【解析】
(1)根据折叠的性质知CE=CB=10.在在直角△COE中,由勾股定理求得OE=8;
(2)根据OC=6知C(0,6),由折叠的性质与勾股定理,求得D(10,),利用待定系数法求CD所在直线的解析式;
(3)①根据F(18,0),即可求得△COF的面积;②设P(x,0),依S△OCP=S△CDE得×OP×OC=×54,即×|x|×6=18,求得x的值,即可得出点P的坐标.
(1)如图,
∵四边形ABCD是长方形,
∴BC=OA=10,∠COA=90°,
由折叠的性质知,CE=CB=10,
∵OC=6,
∴在直角△COE中,由勾股定理得OE==8,
∴E(8,0);
(2)设CD所在直线的解析式为y=kx+b(k≠0),
∵C(0,6),
∴b=6,
设BD=DE=x,
∴AD=6-x,AE=OA-OE=2,
由勾股定理得AD2+AE2=DE2
即(6-x)2+22=x2,
解得x=,
∴AD=6-=,
∴D(10,),
代入y=kx+6 得,k=-,
故CD所在直线的解析式为:y=-x+6;
(3)①在y=-x+6中,令y=0,则x=18,
∴F(18,0),
∴△COF的面积=×OF×OC=×18×6=54;
②在x轴上存在点P,使得S△OCP=S△COF,
设P(x,0),依题意得
×OP×OC=×54,即×|x|×6=18,
解得x=±6,
∴在x轴上存在点P,使得S△OCP=S△COF,点P的坐标为(6,0)或(-6,0).
【题目】在学校组织的知识竞赛活动中,老师将八年级一班和二班全部学生的成绩整理并绘制成如下统计表:
得分(分) 人数(人) 班级 | 50 | 60 | 70 | 80 | 90 | 100 |
一班 | 2 | 5 | 10 | 13 | 14 | 6 |
二班 | 4 | 4 | 16 | 2 | 12 | 12 |
(1)现已知一班和二班的平均分相同,请求出其平均分.
(2)请分别求出这两班的中位数和众数,并进一步分析这两个班级在这次竞赛中成绩的情况.