题目内容
【题目】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=____.(结果保留根号)
【答案】.
【解析】试题分析:延长EF和BC,交于点G.∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF.
∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=.
由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,∴.
设CG=x,DE=2x,则AD=9+2x=BC.
∵BG=BC+CG,∴=9+2x+x,解得x=,∴BC=9+2()=.
故答案为:.
练习册系列答案
相关题目
【题目】如图1,是等腰直角三角形,,,点P在的边上沿路径移动,过点P作于点D,设,的面积为(当点P与点B或点C重合时,y的值为0).
琪琪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是琪琪的探究过程,请补充完整:
(1)自变量x的取值范围是______________________;
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | ||||
y/ | 0 | m | 2 | n | 0 |
请直接写出 , ;
(3)在图2所示的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图像;并结合画出的函数图像,解决问题:当的面积为1时,请直接写出的长度(数值保留一位小数).
(4)根据上述探究过程,试写出的面积为y与的长度x cm之间的函数关系式,并指出自变量的取值范围.